THE RESIDUES OF n* MODULO p

نویسندگان

  • LAWRENCE SOMER
  • Roger Crocker
چکیده

5. Uk = rUk_1 + sUk„2\ U0; U-L arbitrary (J/jff + £/0s#)(l ra s^)" = £7-̂ + (^ + sUQ)x + ••• or (£/0 + (U1 i/0)̂ )(l 2W sx)' = [/0 + U±x + (rU1 + s£/Q)x + ••• 6. Tn = p^.3. + sTn_2 rsTn_3; TQ9 T±s T2 arbitrary (T2x + (sT1 rsTQ)x rsT^) (1 rx s# + rsx)' = T2x + (vT2 + s ^ PS^Q)^ + ••• or (T0 + (Si -rT0)x + (T2 r ^ sT0)x)(l rx sx + P 2 X 3 ) 1 = T0 + T±x + T2x + (rT2 + sTx r TQ)x + •••• From the solutions given in [2] and [1], it can be verified that we obtain the terms generated above. The generating function given in Section 2 can be used to generate terms of any given recurrence relation. With specified values for the Ti and the initial conditions, the problem becomes a division of one polynomial by another.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distribution of Residues Modulo p

The distribution of quadratic residues and non-residues modulo p has been of intrigue to the number theorists of the last several decades. Although Gauss’ celebrated Quadratic Reciprocity Law gives a beautiful criterion to decide whether a given number is a quadratic residue modulo p or not, it is still an open problem to find a small upper bound on the least quadratic non-residue mod p as a fu...

متن کامل

Density of non-residues in Burgess-type intervals and applications

We show that for any fixed ε > 0, there are numbers δ > 0 and p0 > 2 with the following property: for every prime p > p0 and every integer N such that p1/(4 √ e )+ε 6 N 6 p, the sequence 1, 2, . . . , N contains at least δN quadratic non-residues modulo p. We use this result to obtain strong upper bounds on the sizes of the least quadratic non-residues in Beatty and Piatetski–Shapiro sequences....

متن کامل

On the Consecutive Powers of a Primitive Root: Gaps and Exponential Sums

For a primitive root g modulo a prime p ≥ 1 we obtain upper bounds on the gaps between the residues modulo p of the N consecutive powers agn , n = 1, . . . , N , which is uniform over all integers a with gcd(a, p)= 1. §

متن کامل

Ju l 2 00 6 Density of non - residues in short intervals

We show that for any fixed ε > 0, there are numbers δ > 0 and p 0 2 with the following property: for every prime p p 0 , there is an integer p δ < N p 1/(4 √ e)+ε such that the sequence 1, 2,. .. , N contains at least δN quadratic non-residues modulo p. We then apply this result to obtain a new estimate on the smallest quadratic nonresidue in a Beatty sequence.

متن کامل

ضرب‌کننده و ضرب‌جمع‌کننده پیمانه 2n+1 برای پردازنده سیگنال دیجیتال

Nowadays, digital signal processors (DSPs) are appropriate choices for real-time image and video processing in embedded multimedia applications not only due to their superior signal processing performance, but also of the high levels of integration and very low-power consumption. Filtering which consists of multiple addition and multiplication operations, is one of the most fundamental operatio...

متن کامل

On Periods modulo a Prime of Some Classes of Sequences of Integers

Theorem 1: Let un, n > 0, be the general term of a given sequence of integers and define the transformation T^yk)(un) as T^xyJc){un) = xun+lc +yun for every n > 0, A: being a positive integer. Then, if x mdy are nonzero integers and there exists a positive prime number/? which divides T(x,y,k)(n) f° every n>0 and is relatively prime to x, the distribution of the residues of (un) modulo p is eit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010